PHYSICAL REVIEW E

VOLUME 48, NUMBER 4

OCTOBER 1993

Scalar model for plasma turbulence

J. L. Ottinger and D. Carati
Service de Physique Statistique, Plasmas et Optique Non-Linéaire,
Faculté des Sciences, Université Libre de Bruzelles, Campus Plaine, Code Postal 231, B-1050 Bruzelles, Belgium
(Received 6 January 1993)

A shell model is proposed to study the Hasegawa-Mima equation [Phys. Fluids 21, 87 (1978)]
describing the electric-potential fluctuations in microturbulent plasmas. The similarities with two-
dimensional hydrodynamic turbulence are discussed. Both the direct cascade of enstrophy and the
reverse cascade of energy are investigated. The power-law spectra related to these cascades as well
as the fluxes and higher moments of the fluctuations are computed. These quantities appear to be
in good agreement with both the usually accepted phenomenology and the multifractal model.
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I. INTRODUCTION

The complete description of turbulent flow in a labo-
ratory or in natural conditions does not seem possible in
the current state of mathematical physics. In the case
of plasma turbulence, the problem appears to be even
more complicated, due to the coupling between the ve-
locity and the electromagnetic fields. This explains why
analytical results remain so rare. Furthermore, the tur-
bulent phenomena are characterized by a wide range of
relevant spatial scales. In Fourier space, a large number
of modes thus has to be taken into account. Due to both
the complexity of the nonlinear coupling terms and the
enormous number of degrees of freedom, analytical cal-
culations as well as numerical simulations appear to be
very difficult to achieve.

Recently, shell models [1-7] have been introduced to
get around this difficulty. These models are used to in-
vestigate the statistical properties of strongly turbulent
flows. The aim of shell formalism is clearly not to de-
scribe the complete and exact dynamics of the turbu-
lence. Only the universal properties can be obtained
from these simple models. Instead of considering each
Fourier mode as an independent variable, these models
introduce a small number of variables which are assumed
to describe the characteristic behavior of a large set of
Fourier modes. Such sets usually consist of all the modes
corresponding to a shell of wave vectors. Unfortunately
it is impossible to derive exactly the evolution equations
for the collective variables by starting from the original
equation. They are thus modeled in order to be as sim-
ilar as possible to the latter. As a consequence of their
small number of variables, the numerical and analyti-
cal investigation of the shell models is simpler than the
analysis of the original equations. Their study has shown
that, despite their simplicity, those models reproduce the
main properties of spectra in both hydrodynamic [2-4]
and magnetohydrodynamic (MHD) [1] turbulence. One
of the main interests of the shell models resides in the fact
that nontrivial characteristics of the averaged quantities,
which could find their origin in the evolution of complex
spatial structures [8,9], are also described by the chaotic
behavior of these global variables. This explains why
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it could be interesting to apply these methods to other
kinds of turbulence. Indeed, the instabilities observed in
plasma physics are not limited to the MHD turbulence
that appears in the collision-dominated plasmas. In this
work, we are particularly interested by the microturbu-
lence generated by drift-wave instabilities. They appear
when the self-consistent electric field has a significant
influence on the plasma dynamics and are usually de-
scribed by the velocity distribution function. Hasegawa
and Mima [10] have proposed a simplified closed equation
for the electric-field fluctuations. The Hasegawa-Mima
(HM) equation will be the starting point of our study.
Of course, this equation is itself a simplified version of
the complete set of equations describing the plasma dy-
namics. However, it is usually considered as a reasonable
approximation to describe drift-wave turbulence. More-
over, it will be shown that its fairly simple structure lends
itself easily to the shell-model formalism. We also note
that the microturbulence could be the source of impor-
tant fluxes of both energy and matter in magnetically
confined plasmas in tokamaks [11]. It is then very impor-
tant to develop simple approaches that should improve
our understanding of the experimental conditions needed
to perform controlled thermonuclear fusion in magneti-
cally confined plasmas.

Our goal is then to investigate the statistical proper-
ties of the HM equation briefly presented in Sec. II by
using the shell-model ideas. The first part of this work is
devoted to the elaboration of the shell model related to
the HM equation. We explain in Sec. III the arguments
used to derive this shell model. They are very similar to
those invoked by Yamada and Ohkitani [2] for the two-
dimensional (2D) Navier-Stokes equation: enstrophy and
energy conservation, required similitude of structure be-
tween the original equation and the model, etc. Some
motivations for the introduction of this model are pre-
sented in Sec. IV. The second part of this work con-
sists in testing the validity of the shell model. We show
that both the energy and enstrophy spectra behave like
power laws with characteristics that are in good agree-
ment with the direct simulations of the HM equation. In
a third step, we use the shell model to estimate quanti-
ties that are more difficult to obtain from experiments or
from direct simulations. For example, higher-order mo-
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ments of the electric potential fluctuations ((6¢™), with
n > 2) are computed. We also obtain the wave-vector
dependence of the energy transfer from small to large
scales and similar results for the direct enstrophy cascade.
Two ranges of wave vectors with different properties have
been considered. In Sec. V we investigate the large-wave-
vector range in which the HM model is equivalent to the
two-dimensional Navier-Stokes (NS) equation for an in-
compressible inviscid fluid. Simulations corresponding
to the small-wave-vector range are discussed in Sec. VI.
Some general considerations concerning shell models and
the existence of fixed points related to the cascades are
pointed out in Sec. VII.

II. HASEGAWA-MIMA EQUATIONS
FOR DRIFT-WAVE TURBULENCE

A. Model equations

The Hasegawa-Mima model [10] was introduced to de-
scribe a strongly turbulent two-dimensional plasma with
cold ions. In such plasmas, the ions are considered as
quasi-immobile while the electrons follow very intricate
trajectories which can be seen as a combination of dif-
ferent kinds of motion: Along the magnetic field, the
equilibrium is quickly reached [12] and the inertial mo-
tion is not perturbed over rather large scales. In the
plane perpendicular to the magnetic field, the motion is
decomposed into a fast gyration around the guiding cen-
ter and a slow drift. In the HM model, two kinds of
drift motion have to be considered: the electromagnetic
and the polarization drifts, respectively, described by the
velocities

E=-V,¢xB/B2 (1)

and

1 0
Vo g Ve e VOV @

where ¢ is the time and V is the gradient in the plane
perpendicular to the magnetic field. We work in the
shearless slab geometry, where the magnetic field is con-
stant in direction and intensity: B = Byl,. Here 1,
denotes the unit vector in the z direction. We have also
introduced the ion-cyclotron frequency, w.; = eBo/m;
(—e is the electron charge and m; the ion mass) and the
fluctuation of the electrical potential ¢. In the adiabatic
approximation, this fluctuation obeys the Boltzmann dis-
tribution. It is related to the charge density n by the
quasineutrality condition

n/ng =ed/Te , (3)

where ng is the equilibrium density of electrons and 7.
is the electronic temperature.

To extract the long-time behavior of the electrons, it
is usual to make the drift approximation consisting of an
average over their fast gyration. The equation for the
charge density reads then
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O Vs [nlve +v)] =0 (4)

Relations (1) and (3) imply that the velocity vg does
not contribute to Eq. (4) because V, - (nvg) = 0. By
using Egs. (2)—(4), the evolution equation for ¢ in Fourier
space reads

OPx(t
qg(t( ) wic P (1) Z Acer i Brer(t) e (t)
k:k’+k”

(5)

The fluctuation ¢(x,t) is expanded in a spatial Fourier
series in the plane perpendicular to B:

Z[¢

where x = (z,y) and k = (ks, ky). The coupling matrix
elements Ay x/ ik~ are given by

b(z,y,t) = e** tecl, (6)

. 1 ,
A e = 1—}-—k2(k x k") L[(k")? = ()] . (7)

In the linear term, the drift-wave frequency is given by

« _ —kyTO(Inng)/0x
Y = eBo(1+ k2)we ®)

As usual, the space variable z in ng is assumed to refer
to the slow spatial dependence of macroscopic quantities
in the direction 1, perpendicular to the magnetic field.

In Eq. (5), t and x are dimensionless variables expressing
the time in units of w.; and the space in units of an
effective gyroradius p, = =. Here, c, denotes the ion

sound speed given by (Te/m;)l/z.

B. Relation with the 2D Navier-Stokes equation

As already pointed out by Hasegawa and Mima [10],
in the range of wave vectors k > 1 Eq. (5) is equivalent
to the NS equation for a two-dimensional incompressible
and inviscid fluid:

(gt+v V)v———Vp, 9)

V.v=0, (10)

where v is the two-dimensional velocity field and p rep-
resents the hydrodynamic pressure.

Due to the incompressibility condition (10), the veloc-
ity derives from a scalar potential: v = V x (41,). By
taking the curl of Eq. (9), we obtain

<%) V3 — (Vi x1,-V)V3g=0. (11)

In Fourier space, Eq. (11) reads
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(t) 1 -
w02 Awete®ue®.  (12)
Bt
where
- 1,
Mo per = 3 (K < K") - L[(k")? = (K)] . (13)

If £ > 1 the HM equation for an homogeneous plasma
reduces to the NS equation for the scalar potential.
Within this limit, the drift frequency becomes negligible
and the nonlinear terms defined by the coupling matrices
Ag x kv (7) and Agi,,k” (13) are equal.

Let us notice that two important quantities are con-
served by the HM equations: the electric energy

E =Y |¢kl(1+ ) (14)
k

and

Z =3 62101+ k2)k? . (15)

Because these quantities correspond to the kinetic en-
ergy and the enstrophy in the 2D NS equation, respec-
tively, we are using the same vocabulary to denote E
and Z in what follows. We shall discuss in the following
sections the influence of these invariants.

III. SHELL MODEL FOR THE HM EQUATION

The shell models [1-7] were introduced to investigate
the main properties of fully developed turbulence start-
ing from very simplified equations. Instead of starting
directly from the complete equations (NS, MHD, HM,
etc.), the shell models only consider a small number of
collective variables assumed to mimic the essence of the
turbulent dynamics.

The Fourier space is then divided in shells around the
origin. Each shell has a width g times greater than the
previous one and includes all the wave vectors such that
kog™ /2 < k < kog™*t'/2. The parameter g is a free
parameter of the model. Its choice will be discussed in
Sec. VII. The characteristic wave vector length of a shell
is given by

kn = kO gn ) (16)

and all information given by the modes ¢y of the shell is
assumed to be given by a single complex variable ¢,,.

Unfortunately, due to the nonlinearity in the equation
for ¢y, it is impossible to derive an exact equation for the
collective variables ¢,. They are modeled in such a way
that the main characteristics of the original equations are
preserved. For the HM model, we choose the following
equations:

a¢ -
Bp = Wnbnt D Mk kb B S+ fr = dn B,

n',n'

(17)
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where ¢} is the complex conjugate of ¢,,. Let us make
the following remarks about Eq. (17).

(i) Each equation contains nonlinear terms which cor-
respond to the convolution term. The matrix element
Ak, ki K, introduces a coupling between the shell vari-
ables labeled n, n’, and n”. Such a coupling is the guess
of what the couplings between all wave vectors k, k/,
and k" belonging to the shells n, n’, and n” should be
in the original HM equation. Its structure is chosen to
mimic as much as possible the HM nonlinearity. Partic-
ularly, the shell equations are required to have the same
k dependence as the original equation. This is the case if

1
Akn,k":,k"u = Qn,n'n'" W(kn’kn”)[kg” - kvzz’] . (18)
The an ' ne are of the order of unity and are chosen in
such a way that the complete nonlinear term conserves
both the total energy and the total enstrophy in the shell
model:

E=3 I62(1+#2), (19)
N
Z =3 16210+ K22 . (20)

These quantities have to be compared with (14) and (15).
A more complete analysis of the construction of the non-
linear term is given in Sec. VII.

(ii) In order to compare our results with previous
works, we are using the usual locality assumption about
the interactions in the Fourier space. The most impor-
tant contribution in the nonlinear term of Eq. (5) is then
assumed to originate from the triads {ki, k2,ks} such
that the three lengths k;, k2, and k3 are of the same or-
der. In the shell model, this implies that the only triplets
{n,n’,n"} to be kept in Eq. (17) are {n,n+1,n+2}, {n—
1,n,n+1}, and {n—2,n—1,n}. The equations are then
given by

¢, .
99 it + an Snt bz + bn ur brst

ot
+cn ¢n+1 ¢n+2 + fn - dn¢n . (21)
Using the definitions (16) and (18), we find

An= ﬁ kn—2 kn_1 (k'rzl—l —ki_,)
ak? g2 -1
1+ k2 g7
o Bkn g'—1
T 14k2 g2
4
= ey (P 1) g (22

The conservation of energy and enstrophy implies the
following relations:

« a

/6 = ) Y=

7 72 (23)
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(iii) The frequency wy (8) is clearly anisotropic in the
perpendicular plane (kg,ky). Such a term is not easily
described in the spirit of shell models. A possible solution
would be to introduce a frequency with a similar but
isotropic k£ dependence:

—kn, TeO(lnng)/0xz = —kn o
(1+k3) ENCES e

Wy =

eBow,; (24)

However, we are simply neglecting this term in the
numerical simulations. Due to the k dependence of wy,
such an approximation is certainly justified within both
the very-large- and the very-small-k limits. It is not the
case in the range around k£ ~ 1.

(iv) The external forcing term corresponds to an en-
ergy input in the system. It is assumed to occur in a very
restricted range of wave vectors consisting of two succes-
sive shells labeled f and f + 1. The characteristic length
scale of the forcing is then approximately 1/ks. In the
numerical simulations, we have chosen

fn = jO(én,f + 6n,f+1) 3 (25)

where jo is a control parameter and §; ; is the Kronecker
symbol.

(v) In order to prevent a continuous growth of en-
ergy and to keep the system in a stationary state, we
also introduce dissipative terms that are neglected in the
HM model. Indeed, at the laboratory scale as well as
at microscopic scales, dissipation mechanisms always ex-
ist. The form of the dissipative terms is not important
here because most of the analysis is made in the range of
wavelengths where they do not influence the dynamics.
Their role is to ensure the total dissipation of the input
energy and enstrophy at the limits of our domain. For
that purpose we take

d, = vk: +V'k; %, (26)

where v (¢/') is the control parameter for the high- (low-)
k region of the spectrum. The rapid increase of the dis-
sipation at the edges of the domain allows us to reduce
the number of modes where the dissipation influences the
dynamics. We are then able to observe inertial ranges
below and behind the forcing without keeping too many
variables. The k% law describing the high-k viscosity was
already used in the direct simulations of the 2D NS or HM
equation [9,13,14]. The law describing the dissipation at
low k is more difficult to justify because it is related to
the large scales and depends thus on the geometry of the
reactor, on edge phenomena. Other values for the expo-
nent of k (—8 and —3 instead of —6) in this dissipation
term were tested and no significant modification to the
results appears in the cascade range.

The set of equations (17)—(26) defines the Hasegawa-
Mima shell equations, which are used in the following
sections.

IV. MOTIVATIONS

As already mentioned in the preceding section, it is
generally impossible to derive from a nonlinear partial
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differential equation a set of exact shell equations. In that
sense, any shell equation must be considered as a simpli-
fied model. It is usually made plausible by the great sim-
ilarity between its structure and the one of the original
equation. Of course, the applicability of such models re-
ducing the number of variables from billions to less than
a hundred may appear questionable. This is particularly
true in the turbulence regimes where the large number
of excited length scales is often emphasized. Moreover,
a large amount of information is lost when a partial dif-
ferential equation is modeled by shell equations. For all
these reasons, it is important to address the questions
“what is gained by using the shell model instead of the
original equation and why can we be confident in the
results?”

Before we discuss these points we would like to make
clear the main differences between the shell models and
the subgrid-scale models [15]. The latter are derived by
modeling the small-scale phenomena that are usually as-
sumed to be statistically homogeneous, stationary, and
isotropic. The resulting equations are still nonlinear par-
tial derivative equations with a cutoff in wave vector that
reduces the number of Fourier modes. Consequently,
they can be used to investigate the influence of the ge-
ometric characteristics of the experimental setup on the
macroscopic properties of the flow. However, they lose
their interest if one tries to use them to compute the dy-
namics of Fourier modes in a very large range of wave
vectors. On the other hand, shell models are derived by
modeling the dynamics of collective variables summariz-
ing the relevant information of a shell of wave vectors.
By definition, they are unable to reproduce any phenom-
ena related to the geometry of the flow. However, they
are assumed to describe the statistical and generic prop-
erties of a turbulent system for wave vectors that are not
influenced by the boundary conditions or by the initial
conditions.

Let us now explain why we believe that the statistics of
the shell model could be a good approximation of the HM
equation (once again, it must be confessed that no rigor-
ous proof of this fact can be provided). First, we recall
that the shell model derived for the Navier-Stokes equa-
tion has been shown to reproduce surprisingly well the
universal statistics of both the 2D and the 3D turbulence
[2-4,16]. Because we have followed a very similar proce-
dure to derive the present shell model, their is no evident
reason to believe that it will fail in the determination of
the statistics of the drift-wave turbulence described by
the HM equation. Second, it is shown in the following
sections that the spectra of both the energy and the en-
strophy computed by the shell model fit very well the
direct simulation results [13,14]. Consequently, the shell
model seems to be able to reproduce the very basic prop-
erties of the drift-wave turbulence. We then make the
guess that it is also valid to investigate less conventional
characteristics that are not so easy to obtain by direct
simulation.

At this point, it is also important to stress why the shell
models could be more useful than the original equation to
investigate the statistics of turbulence, particularly in the
case of the HM equations. Of course, consisting of a set
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of simple dynamical equations, the numerical integration
of the shell model is by far easier than the direct simula-
tion of the HM equation. This is a trivial establishment
that has nontrivial consequences. For example, by inte-
grating the model over a very large time, the statistics of
the shell variables can be determined in a very accurate
way. Particularly, the high moments of the electric po-
tential fluctuation ({|¢|™)) can be computed until n = 10
[3,4,16]. Such values certainly cannot be reached by us-
ing the direct simulation of the HM equation. We have
also computed the fluxes of energy and enstrophy, quan-
tities for which estimation cannot be easily obtained by
dimensional analysis as it is usually done for the spec-
tra. In particular, we are showing that the fluxes behave
very differently for scales that are larger than the charac-
teristic length of energy injection and for scales that are
smaller than this length. This is in agreement with the
usual two cascades picture of 2D turbulence.

Let us briefly anticipate the final discussion (Sec. VI)
to motivate further this work by two prospectives of the
method. First, the simplicity of the shell-model equation
should allow some analytical investigations that would
probably be impossible for the original equation. Second,
these models may play a large part in the understanding
of the anomalous transport coefficients. Indeed, the re-
lations between the thermodynamical fluxes and forces
are usually dependent on the correlation between differ-
ent fluctuations, i.e., precisely the quantities that can be
easily computed in the shell-model formalism.

V. RESULTS IN THE NAVIER-STOKES RANGE

As discussed in Sec. II, the HM model is equivalent to
the 2D incompressible and inviscid NS equations within
the large-k limit. For that reason, the large wave vectors
are said to correspond to the Navier-Stokes range. Here,
we are investigating this NS range.

Two types of simulations were made with g =2, N =
30 (run A) and g = (1 + v/5)/2, N = 40 (run B). The
reason for these choices is explained in Sec. VII. In both
cases the wave-vector range is approximately the same:
ko = 1 S k < 10° (the inertial range begins in these
conditions at k& ~ 10). The simulations may thus be
compared to each other. The results presented in this
section correspond to run A. They will be followed by
the values corresponding to the run B, given between
brackets, if they are different. The dissipation is defined
by the values v = 1072% and ' = 1000 in (26). The
free parameter « in the nonlinear terms (22) and (23) is
chosen a = g%. The forcing term (25) acts on the central
mode of the domain: f = 14 [f = 20], i.e., k ~ 10%, and
its intensity is determined by jo, = 0.01.

Both runs are made with a fourth-order Runge-Kutta
integrator with a variable time step chosen of the order
of 1/20 of the fastest time scale of the variables (dt ~
5x107%). Typical values of the time scales of the different
modes are

_ | (e 2
(ki) = ’W ) (27)
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where (a) is the average value of a. These values are
shown in Fig. 1. The averages are taken over long times
(T ~ 200).

In order to make easier the comparison between the
shell variables and the Fourier-space variables, let us de-
fine the relations between the total energy, the energy
spectrum, and the potential fluctuation spectrum. First,
the relation between the energy spectrum E(k) and the
total energy is given by

E= /m dk B(k) . (28)

On the other hand, the total energy is also related to the
electric potential fluctuations:

E= /dk | |? (1 + k2) =/ dk 27 k |¢k|2 (1 +k2) ,
0

(29)

where T}, denotes the spatial average of z(k) over the an-

gular variable. Finally, the total energy can be expressed
in terms of the shell variables:

E= Z (kiz1 — ki) E(k;) = Z ki (g9 —1) E(k;), (30)

and similarly

E = Z ki (g—1) 2m ki |¢:]® (1+ k%) . (31)

By comparing (30) and (31) with (19), (28), and (29),
one obtains

(B(k:))= ,:(*g—’fl)ﬂqsm ,
P
(B P)= s s (32)

Let us note that in the NS range, if in shell variables the
spectrum scales like

(16il%) o ki<, (33)

the Fourier space spectrum will scale like

lngT(k) ¢ 8 logwk

-1 .

o
. e
0"

FIG. 1. Typical time scales for the Navier-Stokes regime as
a function of the wave vector k. Time and space are dimen-
sionless variables introduced in Sec. II.
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E(k) o k=D 2 o k=(+2) (34)

The shell variable quantity (|¢;|?) is shown in Fig. 2.
Two regimes with different spectra (|¢;|%) o< k; ¢ are ob-
served and the value of the exponent € are

€=429+0.01  [4.3440.01], (35)

in the direct cascade (for the variables ¢; with 7 €
{17,25} [{22,36}]) and

e=190+0.12  [1.81£0.12], (36)

in the reverse cascade (i € {4,8} [{5,12}]). Kraichnan
[17] has transposed Kolmogorov’s arguments concerning
the 3D turbulence to the 2D case. He predicted two
regimes with characteristic exponents 4 and 8/3. The
slopes corresponding to the Kraichnan-Kolmogorov (KK)
values are also shown in Fig. 2.

The names “direct” and “inverse” cascades have not
been chosen only because the power laws are roughly sim-
ilar to the KK theory. Indeed, the directions of both the
energy and enstrophy transfers have been calculated and
are in good agreement with the usual phenomenology of
direct and reverse cascades. Let us explain this point by
considering the evolution of the energy contained in the
region k < k;, E<(i), which is given by three contribu-
tions:

</
PP _ Fg i)+ DGi) + 116) | (37)
where F (i) and D3 (i) respectively describe the total
energy input and dissipation for the modes < %, and II(%)
describes the flux of energy from the modes > ¢ to the
modes < i. They respectively correspond to the forcing,
the dissipation, and the nonlinear terms of (21). A sim-
ilar equation can be written for the enstrophy contained
in the region k < k;:

8Z<(i)

= F5() + D5 (i) + 90) (38)

-10

=20

log ,<Ip, I*>
-30

-40

-50 +

FIG. 2. Second-order moment of the fluctuations. The dots
are obtained with a 40-mode simulation with g = (1 + +/5)/2
and the crosses with 30 modes and g = 2. The forcing acts
at k ~ 10%. Two inertial ranges appear to the right and to
the left of the forcing. The straight lines correspond to the
Kraichnan-Kolmogorov’s spectra, i.e., k™83 and k™ %.
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ﬂ
The nonlinear fluxes are given by
1 LNV,
ni) = ;(1 + k;%)¢; o I tce., (39)
) 1 J *8NL .
Qi) = 5 S+ kP )k; ¢, T‘ﬁ’ +cc., (40)
=1

aNL¢. . . .

where =—.%* denotes the contribution of the nonlinear

terms in Eq. (17) for the time evolution of ¢;.

The average fluxes of energy and enstrophy are pre-
sented in Figs. 3 and 4. The flux properties are very dif-
ferent following the range of the wave vector. First, for
the wave vectors smaller than k¢, the enstrophy flux is
zero while the energy flux is negative and almost con-
stant. This range is then associated to a reverse en-
ergy cascade without enstrophy transfer. On the other
hand, the enstrophy flux is positive and constant while
the energy flux is zero for the wave vectors larger than
ky. Such wave vectors correspond to a direct enstro-
phy cascade without energy transfer. This is in complete
agreement with the KK theory for the 2D turbulence in
neutral fluids. The range of shell variables used to evalu-
ate the characteristic exponents for the scaling laws are,
respectively, {17,25} [{22,36}] in the direct cascade and
{4,8} [{5,12}] in the reverse cascade. They correspond
to the ranges of wave vector where the fluxes are reason-
ably constant: 5x 10 <k <107 and 10 < k£ < 150. The
decrease of the fluxes for the smallest and the highest
wave vectors is due to the dissipation phenomena mod-
eled by d,,. We note that the enstrophy flux is more stable
than the energy flux. This can be a consequence of the
characteristic time scales profile presented in Fig. 1. In-
deed, the time scales are smaller in the direct enstrophy
cascade. The average is thus more reliable in this range.

We have also computed the structure function £g

D & -
0.1 I
"
p
' o l:: := I:'I
2 ': :: 'Il4 6 8
1y I:I log k
\ i '|| 10
-0.11 oL UHIRNE
Il"
I||'
L
vy
-0.2 1
]
H

FIG. 3. The averaged flux of energy in the 30-mode simu-
lation (full line) and 40-mode simulation (dashed line). The
flux is zero after the forcing and negative before. The energy
coming from the forcing, at k ~ 10* (in black above the fig-
ure) is dissipated at low k. The range of modes used for the
calculation of the structure functions in the reverse cascade is
shown in grey above the figure. It corresponds to the region
where the flux of energy is “reasonably” constant.
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7
2X10

g
1X10

ogwk

FIG. 4. The averaged flux of enstrophy in the 30-mode
simulation (full line) and 40-mode simulation (dashed line).
The flux is zero before the forcing range (k ~ 10*, in black
under the k axis) and positive before. The enstrophy coming
from the forcing is dissipated at high k. The range of modes
used for the calculation of the structure functions in the direct
cascade is shown in grey under the k axis. It corresponds to
the region where the flux of enstrophy is reasonably constant.

[3,4,16,18] which describes the velocity moment accord-
ing to the definition (|¢,|?) o« k,?. The dimensional
analysis predicts that the structure functions are given
by €& = 2Q in the direct enstrophy cascade and by
EQ = 4/3 @ in the reverse energy cascade. These slopes
and the results of the simulations are shown in Fig. 5.
The structure functions we observe with our model are
o = apQ and £ = arQ in the direct and the reverse
cascades, respectively. The values of the slopes are

ap = 2.13 £0.01
ar = 0.95 £+ 0.06

(2.15 +0.01) ,
(0.9 £ 0.05) . (41)

Such structure functions have been studied in the 3D
case [3,4] and a nonlinear deviation to the Kolmogorov
laws has been observed. Such a deviation should be re-
lated to the singularities of the velocity gradient and to

25 < R
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®
15 b
=
P!
10 2 s g B
= ég
m g 8
5 . ”
B ow B
2 4 6 8 10 12
Q

FIG. 5. The structure functions in the 30- (crosses) and 40-
(dots) mode simulations in the direct and the reverse cascade.
When the gap between the lowest and the highest values is
large enough, these two values are shown. The functions are
linear in Q. The choice of the numbers of modes does not
influence the result.

logwk

FIG. 6. The flux of enstrophy in the small-wave-vector
regime, in arbitrary units. The forcing acts at & ~ 0.02.
A range of wave numbers where the enstrophy flux is almost
constant clearly appears. This corresponds to the direct en-
strophy cascade.

the multifractal structure of the set where the energy dis-
sipation is concentrated; this deviation is in good agree-
ment with the 8 models [3,4,19]. In the 2D case, the
enstrophy conservation does not allow us to apply the 8
model’s assumptions. The linearity of the functions {g
in the two cascades seems coherent with the model. The
multifractal analysis of the two-dimensional turbulence
also predicts the linearity of the structure function [20].

VI. RESULTS IN THE SMALL-
WAVE-VECTOR RANGE

In this section, we are considering the shell model (17)-
(26) in a range including wave vectors around 1. In this
case, the equivalence with the 2D NS equation does not
hold and new phenomena could be observed. Partic-
ularly, Hasegawa and Mima expected a bell spectrum
rather than a power law for the electric-potential fluctu-
ation spectrum. However, this bell spectrum was never
observed in direct numerical simulations of their model
[13,14]. Our results exhibit scaling laws even in the small-
wave-vector range, in agreement with the direct simula-
tions. Moreover, the scaling exponents are almost the
same as in the NS range.

The simulations were made with g = (1 + v/5)/2 and
N = 21 for a wave-vector range given by 1073 < k < 10*
(ko = 0.004). Both the direct enstrophy cascade and
the reverse energy cascade may not coexist in the same
region. The choice of the forcing range determine thus
which one will be observed in the turning-point range
k ~ 1. To compare our results with the Hasegawa-Mima
paper, we force the system in the low-k region (on the
third and fourth modes, k& ~ 0.02), with an amplitude
determined by jo = 0.0001. The dissipation mainly acts
in the high-k region; v = 5 x 10”7, In the low-k region
only the first and second modes are subject to dissipation.
The free parameter a for the nonlinear terms (22) and
(23) was chosen a = g2.

Preliminary runs have been done including a drift fre-
quency (24), with w§ = 2000, 500, and 10. The results
appear to be independent of this parameter. The drift
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. log, <I0, 127

FIG. 7. The fluctuation spectrum in the small-wave-vector
range exhibit a power-law behavior {|¢;|*) o k~*?2. The
straight line corresponds to the Kraichnan-Kolmogorov di-
mensional analysis (o< k™%).

frequency induces a mixing between the real part and the
imaginary part of a shell mode, which does not modify
the value of the moment of the fluctuation. In the sim-
ulation described in this section, we suppress the contri-
bution of the drift-frequency term by assuming w§ = 0.

The behavior of the variables ¢ is very similar to
the NS regime. We observe the direct enstrophy cas-
cade (Fig. 6) and a power law (Fig. 7) for the potential
fluctuation spectrum {|¢;|?) o< k=€ with

€=4.22+0.15. (42)

Of course, the energy and enstrophy spectra are no longer
given by a simple power law because of the factor 1 + k2.
The structure function, shown in Fig. 8, is the same as
in the NS range:

g = aQ

This clearly shows that scaling laws are valid for both
k < 1 and k > 1. Particularly, we do not observe any
bell profile for the fluctuation’s spectrum, in agreement
with the direct simulation of the HM model [13,14]. The
value of the slope, a little steeper than 4, is in good agree-
ment with the Fyfe-Montgomery simulations. Let us note
that Crotinger and Dupree observe a slope steeper than
ours, but their simulations are made in a different con-
text: they describe the nonstationary turbulence which

with a = 1.98 +£0.07 . (43)

12 !
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FIG. 8. The structure function in the small-k range. It
appears to be linear with a slope equal to 1.98.
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appears, without forcing, with an initial potential fluctu-
ation spectrum far from the power-law spectrum.

VII. REMARKS ON THE CONSTRUCTION
OF SHELL MODELS

The preceding sections clearly show that shell mod-
els are able to exhibit many interesting features of the
strong turbulence, such as the existence of two different
cascades. It is interesting to discuss what the essential
ingredients of the model are and what the assumptions
necessary to obtain the scaling laws are. Moreover, we
would like to determine how the main results obtained
from the shell equations depend on the parameters of
the model.

Let us construct a shell model step by step, using as
few restrictive hypotheses as possible. We start with a
finite number of variables; we thus relate the field ¢y,
defined on the continuous plane k = (k5,k,), to the set
‘¢, i =1,..., Nyt defined on a certain grid {k;} on the
same plane. If the grid is symmetric with respect to
the origin, one can find, for each %, an index 7 such that
@7 = ¢; (this corresponds to the condition ¢ = ¢_x).
The time evolution of these variables is described by
equations containing a forcing term, a linear term, and a
nonlinear term:

Ntot
‘b=Fi+Li'¢+ Yy A Iglp, (44)

5l

with A%! = A%, The nonlinear term is chosen in or-
der to ensure the same conservation laws as the initial
equations, i.e.,

BE=Y [¢P(1+k)=C, (45)

Z=> el +k)k:=C". (46)

It is easy to show that this implies

L4 k2 K A2 o
TR Rk (47)

Aidl — AdlE

At this stage there is not yet any shell structure in the
equation. Such a structure arises if we impose a discrete
scale invariance for the equations. Indeed, let us assume
that both the grid {k;} and the evolution equation for ¢y,
are invariant for the change k& — gk. In this case, the grid
has to consist of Ng rings all divided in the same way
into N, angular sectors. The variable associated with
the grid structure will be denoted by ¢7, where ¢ and =
characterize the ring and the angular sector, respectively.
Successive rings must have radius proportional to pow-
ers of g. The choice of g is free. The value 2 is probably
preferred because of the picture of an eddy of size I bro-
ken in 2¢ eddies of size [/2. In their more complex model
for three-dimensional fluid turbulence, Eggers and Gross-
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mann [21] construct a grid invariant under the transfor-
mation k& — 2k and carefully take into account all the
possible interacting triads. Equivalent models could be
constructed with another factor for the invariance. In the
spirit of shell models, where the variables are supposed to
represent all the wave vectors of the shell, such a choice
introduces spurious coupling. For example, wave vectors
of lengths k, 2k, and 4k are coupled, while no triads exist
with these lengths. More realistic values of g are those
such that g"*? < g"*! + g" e, g < (1 + V/5)/2, the
golden number.

The scale invariance in the equation for the shell model
reflects a characteristic of the nonlinear term of the orig-
inal equation. By rewriting (7)

k4 K’ K" k" 2 k' 2
A k= 11 k2 (? X 7) -1, (7> - (E)

=H(k) G (%' k?”) , (48)

one sees that the coupling matrix elements changes under
the transformation k — gk only through H(k). The
coupling matrix for the variables ¢7 should have the same
property. This will be the case if A¥! is a product of
H(k;) and a function © depending only on the angular
variables and the ratios k;/k; and k;/k;. This implies
that the nonlinear term can be rewritten as follows:

) Nr Na
Negr = N N 0oy Hk:) ¢34, (49)
Hi=1v,w=1
with O3, = 03"
The energy and enstrophy conservation leads to
1+ k? ki — k2 H(k;)

Th R 2R H(k) OV

OG- = OG-

With these simple assumptions, without any further
considerations about the coupling constants Of‘i”_“;)(i_l),
we come to the following important conclusion: it is pos-
sible to find stationary solutions for Eq. (49) of the type

oY = Ak, (51)
if
ké
;) = 2 . 52
Hk) = (52)

There are two branches of solutions:

) é+2
= —— =——. 53
€ 3 € 3 (53)
Note that if one chooses § = 4, in agreement with the
original equation, these stationary solutions correspond
to the usual KK direct and reverse cascades where the
energy spectrum is given, respectively, by the power law

E(k) x k=3, E(k) x k~5/3 (54)

The shell model described in Sec. III is a particu-
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lar case of the model described here. We have chosen
N4 = 1 so that the variables u, v, and w disappear.
Moreover, we restricted the shell coupling to local inter-
action, i.e., O ;) = 0if [{ —j| > 2 or [ -] > 2.
The results (51)—(54) show that these restrictions are
not necessary for obtaining the fixed points correspond-
ing to the Kraichnan-Kolmogorov cascades. It could be
interesting to analyze models using nonlocal couplings
(3,2 +nq,2+nq +n2),ny > 1.

The shell variables described by Eqgs. (17)—(26) do not
remain close to the fixed points. Indeed, such fixed points
are unstable and the system quickly reaches a chaotic
regime. However, their existence could influence the dy-
namics of the system and, consequently, the observed
spectra. We have shown in this section that the fixed
points originate from the conservation laws and the as-
sumed scale invariance in the simple shell model as well
as in the more general equations with the nonlinear term
(49) and angular dependence for the variables.

VIII. DISCUSSION

A shell model related to the Hasegawa-Mima model
for the plasma drift-wave turbulence has been proposed.
There were three objectives of the present work: the
derivation of the shell model, the test of it in order to
be sure that the basic characteristics of the HM equation
are recovered, and its use to investigate new properties
of the electric potential statistics. We have already ex-
plained that, as in the other applications of shell model,
the derivation is based on plausibility arguments more
than on a rigorous proof. The test has consisted in com-
paring the results of the model with some properties of
the original equation that are obtained by other meth-
ods. Thus we chose to compute the spectra of energy
and enstrophy in different ranges of wave vectors. The
results presented in Secs. V and VI for these quantities
appear to be in good agreement with the direct simula-
tions and the usually accepted phenomenology. Having
obtained these results, the model has been used to de-
rive more complicated properties of the statistics such
as higher-order moments and the transfer of energy and
enstrophy.

We have first considered the range in which the HM
model is equivalent to the 2D Navier-Stokes equation for
an incompressible inviscid fluid. In the dimensionless
variables introduced in Sec. II, such a range corresponds
to k£ > 1. The numerical results exhibit the main proper-
ties of 2D turbulence. We observe a direct cascade of en-
strophy and a reverse cascade of energy. Moreover, both
the fluxes and the spectra of energy and enstrophy are in
good agreement with the accepted phenomenology of 2D
turbulence, described by the Kraichnan-Kolmogorov the-
ory [17,18]. In that sense, the numerical results derived
from shell model do not seem to depend on the equa-
tions. If two equations are equivalent (for instance, HM
for k > 1 and 2D NS), the corresponding shell models
will exhibit very similar results. This is a very important
property showing the robustness of shell models. More-
over, we have shown that the results are almost indepen-
dent of the shell width g, which is a free parameter in the
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model.

The agreement between shell models and 2D turbu-
lence (described by the Navier-Stokes equation or by the
Hasegawa-Mima equation) deserves some comments. In-
deed, recent experiments and simulations [8,9] have em-
phasized the dominant role of large-scale structures and
collective phenomena in this kind of turbulence. As al-
ready noted, since the geometrical information of the flow
is lost, the shell model is unable to describe the evolution
of specific spatial structures. The success of shell mod-
els seems then to demonstrate that the particularities of
the structures that appear in turbulent flow are unim-
portant to describe the statistical characteristics of the
cascade ranges. However, the geometrical properties of
large-scale structures should probably play a crucial role
in the dissipation of energy at large scale due to the in-
verse energy cascade [20]. We have also investigated the
small-k range, where Hasegawa and Mima expected to
find a bell profile for the potential fluctuation spectrum.
‘We do not observe such a profile and, in agreement with
direct simulations of the HM equations, the shell-model
spectra behave like power laws very similar to the direct
cascade in the NS range. The transfer of energy from
small scales to large scales vanishes and the enstrophy
transfer is positive and almost constant. Moreover, the
spectrum (o< k~%22) is the same as in the large-wave-
vector range.

The shell model was also used in both ranges to com-
pute higher moments of the fluctuation (|¢|™) (until
n = 12). This study was already made in the 3D NS
turbulence case. A fine experiment of Anselmet et al.
[16] has shown that the structure functions of a turbulent
flow do not follow the linear prediction of the KK the-
ory. These deviations are easily observed in shell-model
simulations. They corroborate the existence of intermit-
tency phenomena and of multifractality characteristics
of the flow [20,19,3]. Of course, experimental results
for higher-order moments are very difficult to obtain in
2D (or quasi-2D) turbulent systems such as atmospheric
or oceanographic flow and strongly magnetized plasmas.
Nevertheless, the theoretical arguments used in the 3D
case, applied to the 2D case, are strongly modified by the
enstrophy conservation and lead to the conclusion that
even in the presence of intermittency, the KK prediction
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holds [20]. Our simulations confirm this prediction.

Finally, we have shown that the KK power-law spec-
tra can be related to the fixed points of the shell-model
equations. This establishment is valid for the HM shell
model, but also for more complicated models including
the vectorial structure of the Fourier space but keeping
only a few modes. This kind of model was introduced
in the 3D turbulence investigation by Grossman and Eg-
gers [21] and provides an intermediate model between the
complete equation and the shell model.

Let us end this discussion by some prospectives of the
method. We have already mentioned that the simplicity
of the shell-model equation should allow some analyti-
cal investigations that would probably be impossible for
the original equation. Random-process methods [5] and
small-dynamical-system techniques [6] have been applied
recently to study the shell model for the Navier-Stokes
equation. The results obtained analytically are then used
to corroborate other theory by using a very different ap-
proach [19,20]. Another recent use of shell models con-
cerns the modeling of the advection of a passive-scalar
field in the 3D hydrodynamic turbulence [4]. Similar
methods could be applied to investigate the transport
in plasma: shell equations for both the charge (related
to ¢) and particle (n) density could provide statistical
properties of the moments of these distributions, such
as (¢ @) or (¢ n), which play an important role in the
transport coefficients theory.

We are fully aware of the limitation of shell models,
but we believe that they are a powerful tool to investi-
gate some universal characteristics of turbulence statis-
tics. Their chaotic behavior is rich in information that
could not be analyzed through the resolution of the orig-
inal equation.
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